
Real Analysis I Exercise I (due 09/25/2008)

(1) Show that the set of all sequences with values 0 or 1 is uncountable.

(2) Show that the set of real numbers is uncountable by proving the following:

(i) (0, 1) ≈ R, that is, there is a one-to-one mapping from R onto (0, 1);

(ii) (0, 1) is uncountable.

(3) Let {xn} be a bounded sequence. Show that

lim sup(−xn) = − lim inf xn and lim inf(−xn) = − lim sup xn.

(4) If {xn} and {yn} are two bounded sequences, then show that

(i) lim sup(xn + yn) ≤ lim sup xn + lim sup yn, and

(ii) lim inf(xn + yn) ≥ lim inf xn + lim inf yn.

Moreover, show that if at least one of the sequences converges, the equality
holds in (i) and (ii).

(5) Show that the sequence {xn} defined by xn =
(
1 + 1

n

)n is a convergent
sequence.

(6) Consider a sequence {(Xn, dn)} of metric spaces, and let X = Π∞n=1Xn.
For each x = {xn} and y = {yn} in X, define

d(x, y) =
∞∑

n=1

1
2n
· dn(xn, yn)
1 + dn(xn, yn)

.

(i) Show that d is a distance on X.

(ii) Show that (X, d) is a complete metric space if and only if each
(Xn, dn) is complete.

(iii) Show that (X, d) is compact if and only if each (Xn, dn) is compact.

(7) Let f : X → X be a function from a set X into itself. A point a ∈ X
is called a fixed point for f if f(a) = a. Assume that (X, d) is a compact
metric space and f : X → X satisfies d(f(x), f(y)) < d(x, y) for x 6= y.
Show that f has a unique fixed point.

(8) Let (X, d) be a metric space. A function f : X → X is called a contraction
if there exists some 0 < α < 1 such that d(f(x), f(y)) ≤ αd(x, y); α is
called a contraction constant. Show that every contraction f on a complete
metric space (X, d) has a unique fixed point, that is, show that there exists
a unique point x ∈ X such that f(x) = x.
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(9) Let (X, d) be a metric space. Define the distance of two nonempty subsets
A and B of X by

d(A, B) = inf{d(x, y) : x ∈ A and y ∈ B}.

(i) Give an example of two closed sets A and B of some metric space
such that A ∩B = ∅ and d(A,B) = 0.

(ii) If A∩B = ∅, A is closed, and B is compact (and, of course, both are
nonempty), then show that d(A, B) > 0.

(10) Show that limn→∞ n1/n = 1.

(11) If {xn} is a sequence of strictly positive real numbers, then show that

lim inf
xn+1

xn
≤ lim inf x1/n

n ≤ lim sup x1/n
n ≤ lim sup

xn+1

xn
.

(12) If f is a continuous function on [0, 1] such that
∫ 1

0
xnf(x)dx = 0 for

n = 0, 1, 2, · · ·, then show that f(x) = 0 for all x ∈ [0, 1].

(13) Let {xn} be a sequence of real numbers. The number ` is called a cluster
point of {xn} if given ε > 0 and given N , there exists n ≥ N such that
|xn − `| < ε. Show that lim sup xn and lim inf xn are the largest and
smallest cluster points of the sequence {xn}.

(14) If {xn} is a sequence of real numbers, then show that lim inf xn ≤ lim sup xn

and that lim inf xn = lim sup xn = ` if and only if ` is the limit of {xn}.
(15) Let {xn} and {yn} be two sequences of real numbers. Show that

lim sup xn + lim inf yn ≤ lim sup(xn + yn) ≤ lim sup xn + lim sup yn,

provided the right and left sides are not of the form ∞−∞.

(16) Let p > 1 and 0 < x < 1. Show that there is a sequence {xn} of integers
with 0 ≤ xn < p such that

x =
∞∑

n=1

xn

pn

and that this sequence is unique except when x is of the form q/pn, in
which case there are two such sequences. Show that, conversely, if {xn}
is any sequence of integers with 0 ≤ xn < p, then the series

∞∑
n=1

xn

pn

converges to a real number x with 0 ≤ x ≤ 1. We note that for the case
p = 3, this sequence is called the ternary expansion of x.
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(17) The Cantor set C consists of all those real numbers in [0, 1] that have
ternary expansion (cf. Problem (16)) {xn} for which xn is never 1. (If x
has two ternary expansions, put x in C if one of the expansions has no
term equal to 1.) Show that

(i) C is a closed set,

(ii) C can be put into a one-to-one correspondence with the interval [0, 1],
and

(iii) the set of accumulation points of C is the set itself.

(18) Let f be a real (or extended real) valued function defined for all x in an
interval containing y. Then f is called lower (resp., upper) semicontinuous
at y if f(y) 6= −∞ and f(y) ≤ lim infx→y f(x) (resp., f(y) 6= +∞ and
f(y) ≥ lim supx→y f(x)).

(i) If f(y) is finite, show that f is lower semicontinuous at y if and only
if given ε > 0, there exists δ > 0 such that f(y) ≤ f(x) + ε for all x
with |x− y| < δ.

(ii) Show that f is continuous at y if and only if f is both upper and
lower semicontinuous at y.

(iii) Show that a real-valued function f is lower semicontinuous on (a, b)
if and only if the set {x : f(x) > λ} is open for each real number λ.
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