Real Analysis I Exercise I (due 09/25/2008)

- (1) Show that the set of all sequences with values 0 or 1 is uncountable.
- (2) Show that the set of real numbers is uncountable by proving the following:
 - (i) (0,1) ≈ **R**, that is, there is a one-to-one mapping from **R** onto (0,1);
 (ii) (0,1) is uncountable.
- (3) Let $\{x_n\}$ be a bounded sequence. Show that

 $\limsup(-x_n) = -\liminf x_n \quad \text{and} \quad \liminf(-x_n) = -\limsup x_n.$

- (4) If $\{x_n\}$ and $\{y_n\}$ are two bounded sequences, then show that
 - (i) $\limsup(x_n + y_n) \le \limsup x_n + \limsup y_n$, and
 - (ii) $\liminf(x_n + y_n) \ge \liminf x_n + \liminf y_n$.

Moreover, show that if at least one of the sequences converges, the equality holds in (i) and (ii).

- (5) Show that the sequence $\{x_n\}$ defined by $x_n = \left(1 + \frac{1}{n}\right)^n$ is a convergent sequence.
- (6) Consider a sequence $\{(X_n, d_n)\}$ of metric spaces, and let $X = \prod_{n=1}^{\infty} X_n$. For each $x = \{x_n\}$ and $y = \{y_n\}$ in X, define

$$d(x,y) = \sum_{n=1}^{\infty} \frac{1}{2^n} \cdot \frac{d_n(x_n, y_n)}{1 + d_n(x_n, y_n)}.$$

- (i) Show that d is a distance on X.
- (ii) Show that (X, d) is a complete metric space if and only if each (X_n, d_n) is complete.
- (iii) Show that (X, d) is compact if and only if each (X_n, d_n) is compact.
- (7) Let $f: X \to X$ be a function from a set X into itself. A point $a \in X$ is called a *fixed point* for f if f(a) = a. Assume that (X, d) is a compact metric space and $f: X \to X$ satisfies d(f(x), f(y)) < d(x, y) for $x \neq y$. Show that f has a unique fixed point.
- (8) Let (X, d) be a metric space. A function $f : X \to X$ is called a *contraction* if there exists some $0 < \alpha < 1$ such that $d(f(x), f(y)) \leq \alpha d(x, y)$; α is called a contraction constant. Show that every contraction f on a complete metric space (X, d) has a unique fixed point, that is, show that there exists a unique point $x \in X$ such that f(x) = x.

(9) Let (X, d) be a metric space. Define the distance of two nonempty subsets A and B of X by

 $d(A, B) = \inf\{d(x, y) : x \in A \text{ and } y \in B\}.$

- (i) Give an example of two closed sets A and B of some metric space such that $A \cap B = \emptyset$ and d(A, B) = 0.
- (ii) If $A \cap B = \emptyset$, A is closed, and B is compact (and, of course, both are nonempty), then show that d(A, B) > 0.
- (10) Show that $\lim_{n\to\infty} n^{1/n} = 1$.
- (11) If $\{x_n\}$ is a sequence of strictly positive real numbers, then show that

$$\liminf \frac{x_{n+1}}{x_n} \le \liminf x_n^{1/n} \le \limsup x_n^{1/n} \le \limsup \frac{x_{n+1}}{x_n}.$$

- (12) If f is a continuous function on [0,1] such that $\int_0^1 x^n f(x) dx = 0$ for $n = 0, 1, 2, \cdots$, then show that f(x) = 0 for all $x \in [0,1]$.
- (13) Let $\{x_n\}$ be a sequence of real numbers. The number ℓ is called a *cluster* point of $\{x_n\}$ if given $\varepsilon > 0$ and given N, there exists $n \ge N$ such that $|x_n \ell| < \varepsilon$. Show that $\limsup x_n$ and $\liminf x_n$ are the largest and smallest cluster points of the sequence $\{x_n\}$.
- (14) If $\{x_n\}$ is a sequence of real numbers, then show that $\liminf x_n \leq \limsup x_n$ and that $\liminf x_n = \limsup x_n = \ell$ if and only if ℓ is the limit of $\{x_n\}$.
- (15) Let $\{x_n\}$ and $\{y_n\}$ be two sequences of real numbers. Show that

 $\limsup x_n + \limsup y_n \le \limsup (x_n + y_n) \le \limsup x_n + \limsup y_n,$

provided the right and left sides are not of the form $\infty - \infty$.

(16) Let p > 1 and 0 < x < 1. Show that there is a sequence $\{x_n\}$ of integers with $0 \le x_n < p$ such that

$$x = \sum_{n=1}^{\infty} \frac{x_n}{p^n}$$

and that this sequence is unique except when x is of the form q/p^n , in which case there are two such sequences. Show that, conversely, if $\{x_n\}$ is any sequence of integers with $0 \le x_n < p$, then the series

$$\sum_{n=1}^{\infty} \frac{x_n}{p^n}$$

converges to a real number x with $0 \le x \le 1$. We note that for the case p = 3, this sequence is called the *ternary expansion* of x.

- (17) The Cantor set C consists of all those real numbers in [0,1] that have ternary expansion (cf. Problem (16)) $\{x_n\}$ for which x_n is never 1. (If x has two ternary expansions, put x in C if one of the expansions has no term equal to 1.) Show that
 - (i) C is a closed set,
 - (ii) C can be put into a one-to-one correspondence with the interval [0, 1], and
 - (iii) the set of accumulation points of C is the set itself.
- (18) Let f be a real (or extended real) valued function defined for all x in an interval containing y. Then f is called *lower* (resp., upper) semicontinuous at y if $f(y) \neq -\infty$ and $f(y) \leq \liminf_{x \to y} f(x)$ (resp., $f(y) \neq +\infty$ and $f(y) \geq \limsup_{x \to y} f(x)$).
 - (i) If f(y) is finite, show that f is lower semicontinuous at y if and only if given $\varepsilon > 0$, there exists $\delta > 0$ such that $f(y) \le f(x) + \varepsilon$ for all x with $|x y| < \delta$.
 - (ii) Show that f is continuous at y if and only if f is both upper and lower semicontinuous at y.
 - (iii) Show that a real-valued function f is lower semicontinuous on (a, b) if and only if the set $\{x : f(x) > \lambda\}$ is open for each real number λ .