Real Analysis I Exercise 1 (due 09/25/2008)

(1) Show that the set of all sequences with values 0 or 1 is uncountable.
(2) Show that the set of real numbers is uncountable by proving the following:

(i) (0,1) =~ R, that is, there is a one-to-one mapping from R onto (0, 1);

(ii) (0,1) is uncountable.

(3) Let {x,} be a bounded sequence. Show that

limsup(—x,) = —liminfz,, and liminf(—=z,)= —limsupz,.

(4) If {z,} and {y,} are two bounded sequences, then show that

(i) limsup(z, + y,) < limsup z,, + lim sup y,,, and
(ii) liminf(z, + y,) > liminf ,, + lim inf y,,.

Moreover, show that if at least one of the sequences converges, the equality
holds in (i) and (ii).

(5) Show that the sequence {z,} defined by x, = (1 + %)n is a convergent
sequence.

(6) Consider a sequence {(X,,d,)} of metric spaces, and let X = IIS2 ; X,.
For each = {z,,} and y = {y,} in X, define

d(m,y)—ZTn 1+ dp(Tn,yn)’

(i) Show that d is a distance on X.

(ii) Show that (X,d) is a complete metric space if and only if each
(X, dy) is complete.

(iii) Show that (X, d) is compact if and only if each (X,,d,) is compact.

(7) Let f : X — X be a function from a set X into itself. A point a € X
is called a fized point for f if f(a) = a. Assume that (X,d) is a compact
metric space and f : X — X satisfies d(f(x), f(y)) < d(z,y) for x # y.
Show that f has a unique fixed point.

(8) Let (X,d) be a metric space. A function f : X — X is called a contraction
if there exists some 0 < a < 1 such that d(f(z), f(v)) < ad(z,y); « is
called a contraction constant. Show that every contraction f on a complete
metric space (X, d) has a unique fixed point, that is, show that there exists
a unique point € X such that f(z) = .



9)

Let (X, d) be a metric space. Define the distance of two nonempty subsets
A and B of X by

d(A, B) = inf{d(z,y) : z € A and y € B}.

(i) Give an example of two closed sets A and B of some metric space
such that AN B =0 and d(A, B) = 0.

(ii) If AN B =0, A is closed, and B is compact (and, of course, both are
nonempty), then show that d(A, B) > 0.

Show that lim,,_. n'/™ = 1.
If {z,,} is a sequence of strictly positive real numbers, then show that
x x
liminf =21 < lim inf x}/” < lim sup :n,ll/” < lim sup ndl
Tn Tn
If f is a continuous function on [0,1] such that fol 2" f(x)de = 0 for

n=0,1,2,---, then show that f(x) =0 for all x € [0, 1].

Let {z,} be a sequence of real numbers. The number ¢ is called a cluster
point of {x,} if given € > 0 and given N, there exists n > N such that
|, — €] < e. Show that limsupz, and liminfz, are the largest and
smallest cluster points of the sequence {x,,}.

If {x,, } is a sequence of real numbers, then show that lim inf z,, < limsup x,,
and that liminf z,, = limsup ,, = ¢ if and only if £ is the limit of {x,}.

Let {x,} and {y,} be two sequences of real numbers. Show that
lim sup x,, + liminf y,, <limsup(z, + y,) < limsup z,, + lim sup y,,

provided the right and left sides are not of the form oo — oco.

Let p > 1 and 0 < z < 1. Show that there is a sequence {z,} of integers
with 0 < x,, < p such that
(oo} zn
r= o
n=1 p

and that this sequence is unique except when z is of the form ¢/p", in
which case there are two such sequences. Show that, conversely, if {z,}
is any sequence of integers with 0 < z,, < p, then the series

o0
Tn

pn

n=1

converges to a real number x with 0 < z < 1. We note that for the case
p = 3, this sequence is called the ternary expansion of x.



(17)

The Cantor set C' consists of all those real numbers in [0,1] that have
ternary expansion (cf. Problem (16)) {x,} for which z,, is never 1. (If x
has two ternary expansions, put x in C' if one of the expansions has no
term equal to 1.) Show that

(i) C is a closed set,

(ii) C can be put into a one-to-one correspondence with the interval [0, 1],
and

(iii) the set of accumulation points of C' is the set itself.

Let f be a real (or extended real) valued function defined for all z in an
interval containing y. Then f is called lower (resp., upper) semicontinuous
at y if f(y) # —oo and f(y) < liminf, ., f(z) (resp., f(y) # +oo and
f(y) =z limsup,_,, f(2)).

(i) If f(y) is finite, show that f is lower semicontinuous at y if and only
if given € > 0, there exists 6 > 0 such that f(y) < f(z) + ¢ for all
with |z —y| < 6.

(ii) Show that f is continuous at y if and only if f is both upper and
lower semicontinuous at y.

(iii) Show that a real-valued function f is lower semicontinuous on (a,b)
if and only if the set {x : f(x) > A} is open for each real number .



